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Abstract

We study the transformation of ap-harmonic morphism into aq-harmonic morphism via biconfor-
mal change of the domain metric and/or conformal change of the codomain metric. As an application
of p-harmonic morphisms, we characterize a twisted product among doubly twisted products and a
warped product among twisted products usingp-harmonicity of their projection maps. We describe
thosep-harmonic morphisms which are also biharmonic morphisms and give a complete classification
of polynomial biharmonic morphisms between Euclidean spaces. Finally, we show that a horizontally
homothetic harmonic morphism with harmonic energy density pulls back a nonharmonic biharmonic
map to a nonharmonic biharmonic map and that totally geodesic immersing the target manifold of
a nonharmonic biharmonic map into an ambient manifold produces a new nonharmonic biharmonic
map. These methods are used to construct many examples of nontrivial biharmonic maps.
© 2005 Elsevier B.V. All rights reserved.

MSC: 58E20; 53C12

JGP SC: Global analysis; Analysis on manifolds

Keywords: p-Harmonic morphisms; Biharmonic morphisms; Nonharmonic biharmonic maps

∗ Tel.: +1 405 3256711; fax: +1 405 3257484.
E-mail address: ylou@ou.edu (Y.-L. Ou).

0393-0440/$ – see front matter© 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2005.02.005



Y.-L. Ou / Journal of Geometry and Physics 56 (2006) 358–374 359

1. Introduction

In this paper, we work in the category of smooth objects; so all manifolds, vector fields,
and maps are assumed to be smooth unless otherwise stated.

1.1. p-Harmonic maps and morphisms

Forp > 1, ap-harmonic map is a mapϕ : (M,g) → (N, h) between Riemannian man-
ifolds such thatϕ|Ω is a critical point of thep-energy

Ep(ϕ,Ω) = 1

p

∫
Ω

|dϕ|p dx

for every compact subsetΩ of M. Locally,p-harmonic maps are solutions of the following
systems of PDEs:

τp(ϕ) = |dϕ|p−2
g τ2(ϕ) + (p− 2)|dϕ|p−3

g dϕ(gradg|dϕ|g) = 0,

whereτ2(ϕ) = Traceg∇dϕ denotes the tension field ofϕ. Note that when|dϕ| �= 0, we can
write

τp(ϕ) = |dϕ|p−2
g [τ2(ϕ) + (p− 2)dϕ(gradg(ln|dϕ|g))]. (1)

When p = 2, p-harmonic maps are well known to be harmonic maps which include
geodesic, harmonic functions, and minimal isometric immersions as special cases.

A p-harmonic morphism is a map between Riemannian manifoldsϕ : (M,g) → (N, h)
that preserves solutions ofp-Laplace’s equation in the sense that if�N

p f = 0, then�M
p (f ◦

ϕ) = 0 for any functionf defined (locally) onN. It is well known (see[8,16,21,27]) that a
non-constant map between Riemannian manifolds is ap-harmonic morphism if and only
if it is a horizontally weakly conformalp-harmonic map. Ahorizontally weakly conformal
mapϕ : (M,g) → (N, h) generalizes the notion of a Riemannian submersion in that for any
x ∈ M at which dϕx �= 0, the restriction dϕx|Hx : Hx → Tϕ(x)N is conformal and surjective,
where the horizontal spaceHx is the orthogonal complement ofVx = ker(dϕx) inTxM. Thus
it follows that there is a numberλ(x) ∈ (0,∞) such thath(dϕ(X),dϕ(Y )) = λ2(x)g(X, Y )
for anyX, Y ∈ Hx. Note that at the pointx ∈ M where dϕx = 0 we can letλ(x) = 0 to
obtain a continuous functionλ : M → R which is called thedilation of a horizontally
weakly conformal mapϕ. A non-constant horizontally weakly conformal mapϕ is said to
behorizontally homothetic if the gradient ofλ2(x) is vertical, meaning thatX(λ2) ≡ 0 for
any horizontal vector fieldX on M.

p-Harmonic maps of differentp values have different regularity theory whilstp-Laplace
operator of differentp values have different applications in physics. Also,p-harmonic mor-
phisms of differentp values have different geometry as shown by the following theorem,
which gives some interesting links among horizontal conformality,p-harmonicity and min-
imality of fibers of such maps.

Theorem 1.1. ([2,3,8,43]) Let m > n ≥ 2 and ϕ : (Mm, g) → (Nn, h) be a horizontally
conformal submersion.
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(I) If p = n, then ϕ is p-harmonic (hence a p-harmonic morphism) if and only if
{ϕ−1(y)}y∈N is a minimal foliation of (M,g) of codimension n.

(II) If p �= n, then any two of the following conditions imply the other one:
(a) ϕ is p-harmonic (hence a p-harmonic morphism),
(b) {ϕ−1(y)}y∈N is a minimal foliation of (M,g) of codimension n,
(c) ϕ is horizontally homothetic.

A 2-harmonic morphism is simply called a harmonic morphism examples of which
include holomorphic functions, Hopf fibrations, and Riemannian submersions with minimal
fibers. For a detailed background and developments of the study of harmonic morphisms, we
recommend the recent book by Baird and Wood[6]. An updated bibliography for harmonic
morphisms is available in Ref.[19]. For recent work on the classifications and constructions
of p-harmonic morphisms, see Refs.[35–37].

1.2. Biharmonic maps and morphisms

A biharmonic map is a mapϕ : (M,g) → (N, h) between Riemannian manifolds such
thatϕ|Ω is a critical point of the bienergy

E2(ϕ,Ω) = 1

2

∫
Ω

|τ2(ϕ)|2 dx

for every compact subsetΩ of M, whereτ2(ϕ) is the tension field ofϕ. Jiang[22] derived the
first and second variational formulas for bienergy functional, showing thatϕ is a biharmonic
map if and only if its bitension field vanishes identically, i.e.,

τ2(ϕ) := −�ϕ(τ2(ϕ)) − TracegR
N (dϕ, τ2(ϕ)) dϕ = 0, (2)

where

�ϕ = −Traceg(∇ϕ)2 = −Traceg(∇ϕ∇ϕ − ∇ϕ

∇M )

is the Laplacian on sections of the pull-back bundleϕ−1TN andRN is the curvature operator
of (N, h) defined by

RN (X, Y )Z = [∇N
X ,∇N

Y ]Z − ∇N
[X,Y ]Z.

Note thatτ2(ϕ) = −Jϕ(τ2(ϕ)), whereJϕ is the Jacobi operator which plays an important
role in the study of harmonic maps.

Clearly, any harmonic map is a biharmonic map, so it is interesting to study nonharmonic
biharmonic maps. When the map is the canonical inclusioni : M → R

n of a submanifold
of a Euclidean space, we denote byH the mean curvature vector and view it as a mapH :
M → R

n. Then, Chen[11] called the submanifoldM a biharmonic submanifold if�H =
(�H1, . . . ,�Hn) = 0, where� is the Beltrami–Laplace operator of the metric induced
by i. Noting that�H = �(− 1

m
�i) = − 1

m
�2i = − 1

m
τ2(i) we see thatM is a biharmonic
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submanifold of Euclidean spaceRn if and only if τ2(i) = 0, i.e., the inclusion map is a
biharmonic map. It is well-known (see[14]) that an isometric immersion is minimal if
and only if it is harmonic. So a minimal submanifold is trivially biharmonic. A conjecture
made by Chen[11] states that any biharmonic submanifold of Euclidean space is minimal.
Chen and Ishikawa[12] proved that there is no nonminimal (equivalently, nonharmonic)
biharmonic surface inR3 so the conjecture is true in this case. Though the conjecture is also
known to be true in some other cases (see e.g.,[13,18,20]) it is still open for the general
case. Caddeo et al.[9] obtained a classification of nonharmonic biharmonic submanifolds
in S3, whilst in Ref.[10], they shown that there is no nonharmonic biharmonic submanifold
in hyperbolic 3-spaceH3(−1) and they also gave two ways to construct nonharmonic
biharmonic submanifolds ofSn. Conformally deforming the domain or the target metric of
a harmonic mapϕ : (M,g) → (N, h) so thatϕ becomes a nonharmonic biharmonic map
was studied by Baird and Kamissoko[4] and Balmus[7].

A biharmonic morphism (see[34] for precise definition and background) is a map be-
tween Riemannian manifolds that pulls back local biharmonic functions to local biharmonic
functions. These are characterized as a special subclass of horizontally weakly conformal
biharmonic maps[30,34].

The rest of the paper is organized as follows. In Section2, we study the transformation
of a p-harmonic morphism into aq-harmonic morphism via biconformal change of the
domain metric and/or conformal change of the codomain metric, and we characterize a
twisted product and a warped product according to its projection map being ap-harmonic
morphism for some particular value ofp. Section3 is devoted to the study of the relationship
betweenp-harmonic morphisms and biharmonic morphisms. We describe thosep-harmonic
morphisms which are also biharmonic morphisms and give a complete classification of
polynomial biharmonic morphisms between Euclidean spaces. Finally, in Section4, we
show that a horizontally homothetic harmonic morphism with harmonic energy density
pulls back a nonharmonic biharmonic map to a nonharmonic biharmonic map and that
totally geodesic immersing the target manifold of a nonharmonic biharmonic map into an
ambient space produces a new nonharmonic biharmonic map. These are used to construct
many examples of nontrivial biharmonic maps.

2. p-Harmonic morphisms and some applications

In this section, we first derive a formula for thep-tension field of a horizontally conformal
submersion under a biconformal change of the domain metric and a conformal change of
the codomain metric. We then use it to obtain the conditions under which ap-harmonic
morphism is transformed into aq-harmonic morphism under biconformal and/or conformal
change of metrics. We close the section by giving an application ofp-harmonic morphisms
in characterizing twisted and warped products.

Lemma 2.1. Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submersion with
dilation λ : M → (0,∞). Let g = gh + gv be the decomposition of the metric g into hor-
izontal and vertical components. Let g̃ be a biconformal change of g and h̃ a conformal
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change of h given by

(a) g̃ = σ−2gh + ρ−2gv, (b) h̃ = ν̄−2h,

where σ, ρ : M → (0,∞) and ν̄ : N → (0,∞) are smooth functions. Denote ν = ν̄ ◦ ϕ.
Then, the p-tension field of the map ϕ : (Mm, g̃) → (Nn, h̃) is given by

τ̃p(ϕ) = n(p−2)/2λp−2σpν2−p{τ2(ϕ) + dϕ(grad ln(λp−2σp−nρn−mνn−p))}. (3)

Proof. By Lemma 4.6.6 in[6], ϕ is a horizontally conformal submersion with respect to ˜g

andh̃ on M andN with dilation λ̃ = λσν−1 and has tension field

τ̃2(ϕ) = σ2{τ2(ϕ) + dϕ(grad ln(σ2−nρn−mνn−2))}. (4)

A direct computation using the fact thatϕ is a horizontally conformal submersion gives

|dϕ|p−2
g̃ = n(p−2)/2λp−2σp−2ν2−p. (5)

On the other hand, one can check that the mapϕ with respect to the metrics ˜g andh̃ and
the original map share the same horizontal and vertical spaces. Let{ei} (respectively{ẽi})
be a local orthonormal frame of the horizontal distributionH with respect to metricg
(respectively ˜g). Then,ẽi = σei, and

dϕ(grad̃gf ) = dϕ((grad̃gf )h + (grad̃gf )v) = dϕ((grad̃gf )h) = dϕ

(
i=n∑
i=1

(ẽif )ẽi

)

= σ2 dϕ

(
i=n∑
i=1

(eif )ei

)
= σ2dϕ((gradf )h) = σ2dϕ(gradf ) (6)

for any functionf on M. Using(5) and (6)we have

(p− 2)dϕ(grad̃g ln|dϕ|g̃) = dϕ(grad̃g ln|dϕ|p−2
g̃ ) = σ2dϕ(grad ln(λp−2σp−2ν2−p)).

(7)

Substituting Eqs.(4), (5), and (7)into thep-tension field formula(1) we obtain(3), which
completes the proof of the lemma.�

As an immediate consequence, we have the following corollary.

Corollary 2.2. ϕ : (Mm, g̃) → (Nn, h̃) is a p-harmonic morphism if and only if τ2(ϕ) +
dϕ(grad ln(λp−2σp−nρn−mνn−p)) = 0.

Remark 1. Note that whenν = 1, σ = ρ = α−1, Corollary 2.2reduces to Lemma 5.1 in
[8] where the authors constructed some nontrivialp-harmonic morphism via a conformal
change of the domain metric.

Now we are ready to prove the following theorem which includes Proposition 4.6.8 in
[6] as a special case.
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Theorem 2.3. For p, q > 1, let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic mor-
phism with dilation λ. Let g̃ be a biconformal change of g and h̃ a conformal change of h
given by (a) and (b) in Lemma 2.1. Then, the map ϕ : (Mm, g̃) → (Nn, h̃) is a q-harmonic
morphism if and only if grad(λq−pσq−nρn−mνn−q) is vertical; equivalently, the function
λq−pσq−nρn−mνn−q is constant along horizontal curves.

Proof. Suppose thatϕ : (Mm, g) → (Nn, h) is a submersivep-harmonic morphism. Then,
it is a p-harmonic horizontally conformal submersion. It follows that

τp(ϕ) = |dϕ|p−2{τ2(ϕ) + (p− 2)dϕ(grad(ln|dϕ|))} = 0. (8)

Noting thatϕ is a horizontally conformal submersion with dilationλ and|dϕ|2 = nλ2 �= 0
we have, from(8),

τ2(ϕ) = dϕ(grad(lnλ2−p)). (9)

Using(3) and (9)we obtain

τ̃q(ϕ) = n(q−2)/2λq−2σqν2−qdϕ(grad ln(λq−pσq−nρn−mνn−q)). (10)

Since ϕ is also a horizontally conformal submersion with respect to ˜g and h̃,
we see from (10) that ϕ is a q-harmonic morphism with respect to ˜g and h̃

if and only if dϕ(grad ln(λq−pσq−nρn−mνn−q)) = 0, which is equivalent to dϕ(grad
(λq−pσq−nρn−mνn−q)) = 0. This means that grad(λp−qσp−nρn−mνn−p) is vertical. Thus
we obtain the theorem.�

Corollary 2.4. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism with
dilation λ. Let h̃ be defined as in (b) in Lemma 2.1and g̃ = σ−2g. Then,ϕ : (Mm, σ−2g) →
(Nn, h̃) is a q-harmonic morphism if and only if grad(λq−pσq−mνn−q) is vertical. In partic-
ular, a submersive p-harmonic morphism remains a p-harmonic morphism under conformal
changes σ−2g and h̃ of the domain and codomain metrics if and only if grad(σp−mνn−p) is
vertical.

Proof. Sinceg̃ = σ−2g = σ−2gh + σ−2gv, a direct application ofTheorem 2.3with ρ = σ

gives the first assertion. The second statement follows from the first one withp = q. �

Corollary 2.5. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism
with dilation λ. Then, ϕ : (Mm, σ−2g) → (Nn, h) is a q-harmonic morphism if and
only if grad(λq−pσq−m) is vertical. In particular, a submersive p-harmonic mor-
phism remains a p-harmonic morphism under a non-horizontally homothetic conformal
change σ−2g of the domain metric if and only if the original map is an m-harmonic
morphism.

Proof. Applying Corollary 2.4with ν = 1 gives the first statement. It follows that a sub-
mersivep-harmonic morphism remains ap-harmonic morphism under a conformal change
σ−2g of the domain metric if and only if grad(σp−m) is vertical, which is equivalent to
(p−m)σp−m−1 dϕ(gradσ) = 0. The last statement follows since the conformal change of
metric is non-horizontally homothetic, i.e., dϕ(gradσ) �= 0. �
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Similarly, we have the following corollary.

Corollary 2.6. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism
with dilation λ. Then, ϕ : (Mm, g) → (Nn, β−2h) is a q-harmonic morphism if and
only if grad(λq−p(β ◦ ϕ)n−q) is vertical. In particular, a submersive p-harmonic mor-
phism remains a p-harmonic morphism under a non-homothetic conformal change
β−2h of the codomain metric if and only if the original map is an n-harmonic
morphism.

Corollary 2.7. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism with
dilation λ and p �= m. Then, ϕ : (Mm, σ−2g) → (Nn, h) is an m-harmonic morphism if
and only if the original map is a horizontally homothetic submersion with minimal fibers
and hence it is a p-harmonic morphism for any p > 1.

Proof. Applying Corollary 2.5with q = m we conclude that the mapϕ : (Mm, σ−2g) →
(Nn, h) is anm-harmonic morphism if and only if grad(λm−p) is vertical which is equivalent
to grad(λ) being vertical sincep �= m. The latter implies that the original map is horizontally
homothetic and hence, by[8], a p-harmonic morphism for anyp > 1. It follows from
Theorem 1.1thatϕ has minimal fibers. �

Applying Corollary 2.6with q = n, we have the following corollary.

Corollary 2.8. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism with
dilation λ and p �= n. Then, ϕ : (Mm, σ−2g) → (Nn, h) is an n-harmonic morphism if and
only if the original map is a horizontally homothetic submersion with minimal fibers and
hence it is a p-harmonic morphism for any p > 1.

Using Theorem 2.3, we have the following invariance ofp-harmonic morphisms
under biconformal changes of metric which generalizes the corresponding result for
harmonic morphisms (i.e.p = 2 case) obtained in[31] (see also Corollary 4.6.10
in [6]).

Corollary 2.9. Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submersion with
dilation λ. Set gσ = σ−2gh + σ2(n−p)/(m−n)gv. Then, ϕ : (Mm, gσ) → (Nn, h) is a p-
harmonic morphism if and only if the original map is a p-harmonic morphism.

It was proved in[35] that if ϕ : (Mm, g) → (Nn, h) is a submersivep-harmonic mor-
phism with dilationλ, and suppose thatϕ is not horizontally homothetic. Then, for any
q > 1 andq �= m,ϕ : (Mm, |dϕ|2(p−q)/(m−q)g) → (Nn, h) is aq-harmonic morphism which
is not horizontally homothetic. This provides a method to construct nontrivialq-harmonic
morphisms fromp-harmonic morphisms via a conformal change of the domain metric.
The following corollary characterizes this as the only conformal change of metric of
the form |dϕ|αg that renders a nontrivialp-harmonic morphism a nontrivialq-harmonic
morphism.
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Corollary 2.10. Let ϕ : (Mm, g) → (Nn, h) be a submersive p-harmonic morphism with
dilation λ. Suppose ϕ is not horizontally homothetic. Then, ϕ : (Mm, |dϕ|αg) → (Nn, h) is
a q-harmonic morphism with q �= m if and only if α = 2(p−q)

m−q .

Proof. ApplyingCorollary 2.5with σ = |dϕ|−α/2 we see thatϕ : (Mm, |dϕ|αg) → (Nn, h)
is a q-harmonic morphism if and only if grad(λq−p|dϕ|α(m−q)/2) is vertical. Sinceϕ is
horizontally conformal submersion,|dϕ| = √

nλ, we have

grad(λq−p|dϕ|α(m−q)/2) = grad (Cλ[α(m−q)/2+(q−p)] ), (11)

where C is a nonzero constant. Note that grad(Cλ[α(m−q)/2+(q−p)] ) is vertical if and
only if gradλ is vertical or elseα(m− q)/2 + (q− p) = 0, i.e.α = 2(p−q)

m−q . By assump-
tion, ϕ is not horizontally homothetic, i.e. gradλ is not vertical, thus we obtain the
corollary. �

Recall that the doubly twisted product of Riemannian manifolds (M,g) and (N, h) with
twisting functionsα, β : M ×N → (0,∞) is referred to the Riemannian manifold (M ×
N,α2g+ β2h) which is denoted byα2M ×β2 N. Whenα ≡ 1 we haveM ×β2 N, a twisted
product with twisting functionβ(x, y). Whenα ≡ 1 andβ depends only on the points
in M we have a warped product with the warping functionβ(x). For more study on the
geometry of doubly twisted products we refer to[39]. For curvature conditions for a twisted
product to be a warped product, see[15]. Svensson in[42] characterizes warped products
as special harmonic morphisms. As a generalization, Ou[35] gives a characterization of
twisted products as specialn-harmonic morphisms. Our next theorem characterizes a twisted
product among doubly twisted products and a warped product among twisted products using
p-harmonicity of their projection maps. In proving the theorem, we need the following
lemma.

Lemma 2.11. The projection α2Mm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a doubly twisted
product onto its second factor is a p-harmonic morphism if and only if αmβn−p = f (x) for
some function f : M → (0,∞).

Proof. Consider the projection of the Riemannian product

(Mm ×Nn,G = g+ h) → (N, h), ϕ(x, y) = y. (12)

It is a Riemannian submersion with totally geodesic fibers and hence a harmonic morphism
with dilationλ = 1. Note that the horizontal space at the point (x, y) can be identified with
TyN and henceGh = h,Gv = g. ApplyingTheorem 2.3with p = 2,q = p, λ = 1,ν = 1,
σ = β−1 andρ = α−1 we conclude that the projectionα2Mm ×β2 Nn → (Nn, h), ϕ(x, y) =
y, of a doubly twisted product onto its second factor is ap-harmonic morphism if and only
if gradG(αmβn−p) is vertical. This, in local coordinates, is equivalent to

hij
∂

∂yi
(αmβn−p)

∂

∂yj
= 0.
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It follows that

hij
∂

∂yi
(αmβn−p) = 0 (13)

for any j = 1, . . . , n. Since the metrich is positive definite we see from Eq.(13) that
∂
∂yi

(αmβn−p) = 0 for anyi hence the functionαmβn−p does not depend on the points inN.
Thus we obtain the lemma.�

Theorem 2.12. Let α, β : Mm ×Nn → (0,∞) be two functions. Then,

(1) the projection ϕ :α2 Mm × β2Nn → (Nn, h), ϕ(x, y) = y, of a doubly twisted product
onto its second factor is an n-harmonic morphism if and only if α2Mm ×β2 Nn can be
written as a twisted product;

(2) the projection ϕ : Mm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a twisted product onto its
second factor is a p-harmonic morphism with p �= n if and only if Mm ×β2 Nn can be
written as a warped product;

(3) the projection ϕ : Mm ×β2 Nn → (M,g), ϕ(x, y) = x, of a twisted product onto its
first factor is a p-harmonic morphism if and only if Mm ×β2 Nn can be written as a
Riemannian product.

Proof. For statement (1), we know from [[35], Proposition 2.11] that the projection of
a twisted product onto its second factor is ann-harmonic morphism. Now suppose the
projectionϕ :α2 Mm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a doubly twisted product onto its
second factor is ann-harmonic morphism. Then, byLemma 2.11,α = (1/f (x))1/m for some
functionf : M → (0,∞). It follows that the doubly twisted productα2Mm ×β2 Nn can be
written as a twisted product of (Mm, ḡ) and (Nn, h) with the twisting functionβ, where
ḡ = α2(x)g is a metric onM conformal tog.

For statement (2), we know from[42] (see also[6], Proposition 2.4.26) that the projection
of a warped product onto its second factor is a horizontally homothetic harmonic morphism
hence ap-harmonic morphism for anyp > 1 by [8]. Conversely, suppose the projection
ϕ : Mm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a twisted product onto its second factor is ap-
harmonic morphism withp �= n. UsingLemma 2.11with α = 1 and the fact thatp �= nwe
conclude that the twisting functionβ = (f (x))1/(n−p) for some functionf : M → (0,∞).
It follows thatβ depends only on the points inM, so the twisted productMm ×β2 Nn is in
fact a warped product.

To prove (3), we note that the horizontal and vertical distributions ofϕ areH = TM and
V = TN, respectively. LetG = g+ β2h, thenGh = g andGv = β2h. Since the projection
ϕ : Mm ×Nn → (M,g), ϕ(x, y) = x is a Riemannian submersion with totally geodesic
fibers, it is a harmonic morphism with dilationλ = 1. Noting thatMm ×β2 Nn is isometric to

β2Nn ×Mm, we can applyTheorem 2.3withp = 2,q = p,λ = ν = 1,σ = 1 andρ = β−1

to conclude that the projectionϕ : Mm ×β2 Nn → (M,g), ϕ(x, y) = x, of a twisted product
onto its first factor is ap-harmonic morphism if and only if gradG(βm) is vertical. This,
together with the fact that the horizontal distribution is integrable, implies that the twisting
functionβ does not depend on the points inM. Thus, the twisted productMm ×β2 Nn can
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be written as a Riemannian product of (Mm, g) and (Nn, h̄), whereh̄ is a metric conformal
to h on N. This ends the proof of the theorem.�

From (3) ofTheorem 2.12we can easily deduce the following corollary.

Corollary 2.13. For any p > 1, the projection ϕ : Mm ×β2 Nn → (M,g), ϕ(x, y) = x, of
a warped product onto its first factor is a p-harmonic morphism if and only if β is a constant
and hence Mm ×β2 Nn is in fact a Riemannian product up to a homothety.

Remark 2. Yun proved in [[44], Theorem 2.4] that the projection of a warped product
onto its first factor is harmonic (hence a harmonic morphism) if and only if the warp-
ing function is a constant. Clearly,Corollary 2.13includes Yun’s result as a special
case.

3. p-Harmonic and biharmonic morphisms

In this section, we characterize thosep-harmonic morphisms which are also biharmonic
morphisms and give some examples of such maps which includes harmonic Riemannian
submersions and projections of some warped products as subclasses. These will be used to
construct nonharmonic biharmonic maps in the next section. We close the section by giving
a complete classification of polynomial biharmonic morphisms between Euclidean spaces.

Theorem 3.1. For p �= 4, a submersive p-harmonic morphism ϕ : (Mm, g) → (Nn, h)
is also a biharmonic morphism if and only if ϕ is a horizontally homothetic harmonic
morphism with harmonic energy density, i.e., �g(nλ2/2) = 0.

Proof. If ϕ is a horizontally homothetic harmonic morphism, then it is a submersion by
[17], and it is ap-harmonic morphism for anyp > 1 by[8]. If, in addition,ϕ has harmonic
energy density, then it is also a biharmonic morphism by Theorem 3.8 in[34]. Thus we obtain
the “if part” of the theorem. For the “only if part”, supposeϕ is a submersivep-harmonic
morphism. Then, it is ap-harmonic horizontally conformal submersion with dilationλ such
that|dϕ|2 = nλ2. Using(1) we have

τ2(ϕ) + (p− 2)dϕ(gradg(ln λ)) = 0. (14)

On the other hand, ifϕ is also a biharmonic morphism, then, by Theorem 4.1 in[30], we
have

λ2τ2(ϕ) + dϕ(gradg λ
2) = 0,

which can be written as

τ2(ϕ) + 2dϕ(gradg(ln λ)) = 0. (15)

It follows from (14) and (15)that

(p− 4)dϕ(gradg(ln λ)) = 0. (16)
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Thus, ifp �= 4, then dϕ(gradg (lnλ)) = 0, which means thatϕ is a horizontally homothetic
submersion. It follows from[8] that ϕ is a p-harmonic morphism for anyp > 1 and in
particular a horizontally homothetic harmonic morphism. It follows then from Theorem
3.8 of [34] thatϕ must have harmonic energy density. Thus, we complete the proof of the
theorem. �

Proposition 3.2. The radial projection ϕ : R
m \ {0} → Sm−1, ϕ(x) = x/|x| is a bihar-

monic morphism if and only if m = 4.

Proof. It is known (see, e.g.[6]) that the radial projectionϕ : R
m \ {0} → Sm−1, ϕ(x) =

x/|x| is a horizontally homothetic harmonic morphism with dilationλ(x) = 1/|x|. By
Theorem 3.1, ϕ is also a biharmonic morphism if and only if�Rmλ2 = �Rm (|x|−2) = 0.
Let f : R

m \ {0} → R be the function given byf (x) = |x|α. Then, a direct computation
gives�Rmf = �Rm (|x|α) = α(α− 2 +m)|x|α−2. It follows that|x|α is a harmonic func-
tion in R

m \ {0} if and only if α = 2 −m. In particular,λ2 = |x|−2 is a harmonic function
onR

m \ {0} if and only ifm = 4. Thus, the proposition follows.�

Remark 3. We remark that a four-dimensional domain seems to have a mysterious link to
biharmonicity since in[4] it was proved that inversion in the unit sphereσ : R

m \ {0} →
R
m \ {0}, σ(x) = x/|x|2 is a biharmonic nonharmonic map if and only ifm = 4.

The following proposition provides a class of horizontally homothetic harmonic mor-
phisms with harmonic energy density and hence a class of maps which are both harmonic
and biharmonic morphisms.

Proposition 3.3. The projection ϕ : Mm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a warped

product onto its second factor is a biharmonic morphism if and only if 1/β2 is a harmonic
function on M.

Proof. Note that the projectionMm ×β2 Nn → (Nn, h), ϕ(x, y) = y, of a warped prod-
uct onto its second factor is a horizontally homothetic harmonic morphism with dilation
λ = 1/β [42] (see also[6]). By Theorem 3.1, ϕ is a biharmonic morphism if and only
if �g+β2hλ

2 = 0. Sinceλ = 1/β is a function defined onM, one can easily check that
�g+β2hλ

2 = �gλ
2 = �g(1/β2), from which the corollary follows. �

Theorem 3.4. For m > n ≥ 2, a polynomial map (i.e. a map whose component functions
are polynomials) ϕ : R

m → R
n is a biharmonic morphism if and only if it is a composition

of an orthogonal projection followed by a homothety.

Proof. It is well known (see, e.g.[6]) that the composition of an orthogonal projection
followed by a homothety is a horizontally homothetic harmonic morphism with constant
energy density. Thus, byTheorem 3.1, it is also a biharmonic morphism. Conversely, sup-
poseϕ is a biharmonic morphism, then, by[34], it is a special horizontally weakly conformal
biharmonic map. Sinceϕ is assumed to be a polynomial map, it is harmonic by a theorem in
[1], which states that a horizontally weakly conformal polynomial map between Euclidean
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spaces is harmonic. It follows thatϕ is a harmonic morphism since it is a horizontally weakly
conformal harmonic map[16,21]. By Theorem 3.8 in[34], ϕ is a horizontally homothetic
harmonic morphism with harmonic energy density being both a harmonic morphism and a
biharmonic morphism. It follows from[17] thatϕ is a submersion since it is a nonconstant
horizontally homothetic harmonic map. Finally, using the classification of horizontally ho-
mothetic submersionϕ : R

m → R
n ([36], Theorem 2.7) we conclude thatϕ is a composition

of an orthogonal projection followed by a homothety.�

Remark 4. Note that there are many polynomial harmonic morphisms between Euclidean
spaces (for classifications of quadratic harmonic morphisms, see[33,38]). However, as
indicated byTheorem 3.4, the only polynomial biharmonic morphism between Euclidean
spaces is a composition of an orthogonal projection followed by a homothety. This is also
true forp-harmonic morphism withp �= 2 (see[36], Theorem 2.8).

4. Some constructions of nonharmonic biharmonic maps

In this section, we prove that a horizontally homothetic harmonic morphism with har-
monic energy density pulls back nonharmonic biharmonic maps to nonharmonic biharmonic
maps. We also show that totally geodesic immersing the target manifold of a nonharmonic
biharmonic map into an ambient manifold produces a new nonharmonic biharmonic map.
We use these two methods to construct many examples of nonharmonic biharmonic maps
from or into the standard spheres.

Theorem 4.1. Letϕ : (M,g) → (N, h) be a nonconstant horizontally homothetic harmonic
morphism with harmonic energy density, and let ψ : (N, h) → (Q, k) be a map. Then, the
composition ψ ◦ ϕ : (M,g) → (Q, k) is a nonharmonic biharmonic map if and only if ψ is
nonharmonic biharmonic on the open subset ϕ(M) ⊆ N.

Proof. Sinceϕ is a harmonic morphism, we have (see[16,21])

τ2(ψ ◦ ϕ) = λ2τ2(ψ) ◦ ϕ. (17)

On the other hand, byTheorem 3.1, ϕ is also a biharmonic morphism. It follows from
Proposition 4.5 in[30] that

τ2(ψ ◦ ϕ) = λ4τ2(ψ) ◦ ϕ, (18)

whereτ2(ψ) denotes the bitension field ofψ. From(17) and (18)we conclude thatψ ◦ ϕ is
nonharmonic biharmonic if and only ifψ is nonharmonic biharmonic onϕ(M) ⊆ N. Since
ϕ is a harmonic morphism it is an open mapping[16] and henceϕ(M) ⊆ N is an open
subset. Thus, we obtain the theorem.�

Noting that a harmonic Riemannian submersion is a horizontally homothetic harmonic
morphism with constant hence harmonic energy density we have the following corollary.

Corollary 4.2. Let ϕ : (M,g) → (N, h) be a harmonic Riemannian submersion, and let
ψ : (N, h) → (Q, k) be a map. Then, the composition ψ ◦ ϕ : (M,g) → (Q, k) is a non-
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harmonic biharmonic map if and only if ψ is nonharmonic biharmonic map on the open
subset ϕ(M) ⊆ N.

Remark 5.

(1) Let ϕ : (M,g) → (N, h) be a harmonic Riemannian submersion, and leti : (N, h) →
(N, k) be the identity map. It was proved in [[7], Proposition 2.1 and Corollary 2.2] that
the compositioni ◦ ϕ : (M,g) → (N, k) is a nonharmonic biharmonic map if and only
if i is a nonharmonic biharmonic map on the open subsetϕ(M) ⊆ N. Clearly, this is a
very special case ofTheorem 4.1.

(2) Let Sn(a) = Sn(a) × {b} = {(x1, . . . , xn+1, b)|∑n+1
i=1 (xi)2 = a2, a ∈ (0,1), a2 +

b2 = 1}, andi : Sn(a) → Sn+1 be the canonical inclusion. Then, it was proved in[9]
that i is a nonharmonic biharmonic map if and onlya = 1/

√
2, andb = ±1/

√
2. Let

ϕ : (M,g) → Sn(a) be a harmonic Riemannian submersion. Then, it was proved in
[[32], Theorem 2.1] thati ◦ ϕ : (M,g) → Sn+1 is a nonharmonic biharmonic map if
and only ifa = 1/

√
2 andb = ±1/

√
2. Note that whenϕ is onto orM is compact, the

same results follows immediately fromCorollary 4.2.
(3) For other construction of nonharmonic biharmonic maps using composition of a har-

monic map and an inclusion see[28] (also [29]) where the authors prove that for a
nonconstant mapϕ : (M,g) → Sn( r√

2
), the mapi ◦ ϕ : (M,g) → Sn+1(r) is nonhar-

monic biharmonic if and onlyϕ is harmonic with harmonic energy density.

CombiningTheorem 4.1andProposition 3.3, we have the following corollary.

Corollary 4.3. Let f : (M,g) → (0,∞) be a harmonic function and ψ : (N, h) → (Q, k)
be a nonharmonic biharmonic map. Then, the composition of the projection p2 : M × 1

f

N → N of the warped product followed by ψ is a nonharmonic biharmonic map.

Recall that the second fundamental form∇ dϕ ∈ Γ (T ∗M ⊗ T ∗M ⊗ ϕ−1TN) of a
map ϕ : (M,g) → (N, h) is defined by∇ dϕ(X, Y ) = ∇ϕ

X(dϕ(Y )) − dϕ(∇M
X Y ),∀X, Y ∈

Γ (TM). A map is totally geodesic if its second fundamental form vanishes identically. It is
well known (see, e.g.[14]) that post-composition of a totally geodesic map to a harmonic
map yields a harmonic map. The following proposition can be viewed as generalizations of
this and it provides a method to constructp-harmonic maps and nonharmonic biharmonic
maps.

Proposition 4.4. Let ψ : N → (Q, k) be the inclusion map of a totally geodesic subman-
ifold, and let ϕ : (M,g) → (N, h = ψ∗k) be a map into the submanifold. Then,

(i) the map ψ ◦ ϕ into the ambient space (Q, k) is a p-harmonic map if and only if ϕ is a
p-harmonic map.

(ii) the map ψ ◦ ϕ into the ambient space (Q, k) is a nonharmonic biharmonic map if and
only if ϕ is a nonharmonic biharmonic map.
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Proof. It is well known[14] (see also[6], Proposition 3.3.12) that the second fundamental
form and the tension field of the composition map verify the following identities:

∇d(ψ ◦ ϕ) = dψ(∇dϕ) + ∇dψ(dϕ,dϕ), (19)

τ2(ψ ◦ ϕ) = dψ(τ2(ϕ)) + Traceg∇dψ(dϕ,dϕ). (20)

Recall that ifψ : N → (Q, k) is the inclusion map of a submanifold, or more generally, an
isometric immersion, then we can have an orthogonal decomposition of the vector bundle
ψ−1TQ = τN ⊕ νN into the tangent and normal bundles. We use dψ to identifyTN with its
imageτN in ψ−1TQ. Then, for anyX, Y ∈ Γ (TN) we have∇ψ

X(dψ(Y )) = ∇Q
X Y , whereas

dψ(∇N
XY ) equals the tangential component of∇Q

X Y . It follows that∇dψ(X, Y ) equals the

normal component of∇Q
X Y . This, by definition, is the second fundamental formB(X, Y ) of

the immersed submanifoldψ(N) in Q (see[23], Chapter 7). Thus, the second fundamental
form of an isometric immersionψ : N → (Q, k) (as a map) equals the second fundamental
form of the immersed submaniflodψ(N) ⊆ Q (see also[6], Example 3.2.3). Therefore, the
inclusion map of a totally geodesic submanifold is a totally geodesic map. This, together
with (20), gives

τ2(ψ ◦ ϕ) = dψ(τ2(ϕ)). (21)

On the other hand, using local coordinates, we have

|d(ψ ◦ ϕ)|2 = gij
∂(ψ ◦ ϕ)α

∂xi

∂(ψ ◦ ϕ)β

∂xj
kαβ = gij

∂ϕA

∂xi

∂ϕB

∂xj

∂ψα

∂yA

∂ψβ

∂yB
kαβ

= gij
∂ϕA

∂xi

∂ϕB

∂xj
hAB = |dϕ|2, (22)

where the third equality was obtained by using that fact thatψ is an isometric immersion

and hence∂ψ
α

∂yA
∂ψβ

∂yB
kαβ = hAB. Using (21), (22)and the definition ofp-tension field we

have

τp(ψ ◦ ϕ) = |dϕ|gp−2dψ(τ2(ϕ)) + (p− 2)|dϕ|gp−3(dψ) ◦ dϕ(gradg|dϕ|g)
= dψ(τp(ϕ)), (23)

which gives statement (i).
For statement (ii), we note that the inclusion mapψ is a totally geodesic map, so we can

use a theorem in[41] to have the bitension field of the compositionτ2(ψ ◦ ϕ) = dψ(τ2(ϕ)).
It follows thatψ ◦ ϕ is biharmonic if and only ifϕ is biharmonic. On the other hand, by(21)
we see thatψ ◦ ϕ is nonharmonic if and only ifϕ is nonharmonic sinceψ is an immersion.
This completes the proof of the proposition.�

An interesting problem in the study of harmonic maps concerns the existence and nonex-
istence of harmonic maps from standard spheres into a manifold. For example, in their series
of papers, Lin and Wang[24–26]study approximable harmonic maps based on the existence
and nonexistence of nonconstant harmonic mapsS2 → N called harmonic 2-spheres. One of
their conjectures is (see[24]): any weakly harmonic map of finite energy fromMm into N is
smooth if there are no harmonic spheresSk in N for 2 ≤ k ≤ m− 1. A well-known theorem
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of Sacks and Uhlenbeck[40] guarantees the existence of harmonic 2-sphere inN if the uni-
versal covering space ofN is not contractible. However, Sacks and Uhlenbeck’s technique,
as they pointed out in their paper, does not extend to give the existence of higher-dimensional
harmonic spheres. In[35], it was shown that there exists harmonic 3-sphere inN when the
universal covering space ofN is not contractible. To the author’s knowledge (see also remark
in [24]), there has not been any general statement concerning the existence of higher dimen-
sional harmonic spheres in the literature besides the above-mentioned result. By contrast,
the following theorem shows that nonharmonic biharmonic spheres are abundant.

Theorem 4.5. For any n ≥ 2, the standard sphere Sn admits a nonharmonic (equivalently,
non-minimal) biharmonic homothetic immersion into Sn+k for k ≥ 1.

Proof. For anyn ≥ 2, let ϕ : Sn → Sn( 1√
2
), ϕ(x) = x/

√
2, denote the standard homoth-

ety. It is easy to see thatϕ is a horizontally homothetic harmonic morphism with con-
stant energy density hence it is also a biharmonic morphism byTheorem 3.1. It follows
from Theorem 4.1that the mapi ◦ ϕ : Sn → Sn( 1√

2
) ∼= Sn( 1√

2
) × { 1√

2
} → Sn+1, where

i : Sn( 1√
2
) × { 1√

2
} → Sn+1 denotes the canonical inclusion, is a nonharmonic biharmonic

map since the inclusioni is a nonharmonic biharmonic map[9]. Let ψ : Sn+1 → Sn+k
be the totally geodesic inclusion which mapsSn+1 onto the equator ofSn+k. Then, using
(ii) of Proposition 4.4we see thatψ ◦ i ◦ ϕ gives a nonharmonic biharmonic homothetic
immersion ofSn into Sn+k for anyk ≥ 1. �

The following corollary produces many examples of nonharmonic biharmonic maps into
spheres.

Corollary 4.6.

(i) For any n ≥ 3, there exists a nonharmonic biharmonic map ϕ : S2 → Sn.
(ii) For any n ≥ 3, there exists a nonharmonic biharmonic map ϕ : S3 → Sn.

(iii) For any n ≥ 5, there exists a nonharmonic biharmonic map ϕ : S7 → Sn.
(iv) For any n ≥ 9, there exists a nonharmonic biharmonic map ϕ : S15 → Sn.
(v) For any n ≥ 3, there exists a nonharmonic biharmonic map ϕ : S3 × S3 → Sn.

(vi) For any n ≥ 5, there exists a nonharmonic biharmonic map ϕ : S7 × S7 → Sn.
(vii) For any n ≥ 3, there exists a nonharmonic biharmonic map ϕ : R

4 \ {0} → Sn.

Proof. (i) follows from Theorem 4.5with n = 2. For (ii),(iii) and (iv), leth : S2n−1 → Sn

(n = 2,4,8) be the Hopf fibration which is well-known (see, e.g.[6]) to be a horizontally
homothetic harmonic morphism with constant energy density. It follows fromTheorem 3.1
that it is also a biharmonic morphism. Letϕ : Sn → Sn+k be the nonharmonic biharmonic
homothetic immersion defined inTheorem 4.5. Then,ϕ ◦ h gives the required nonharmonic
biharmonic map. For (v) and (vi), letF : R

n × R
n → R

n with n = 4,8, andF (x, y) = xy

denote the standard multiplication in the real algebra of quaterionic or Cayley numbers.
It is proved in[5] that this harmonic morphism restricts to a harmonic morphismf =
F |Sn−1×Sn−1 : Sn−1 × Sn−1 → Sn−1, where the target sphere is given the standard metric
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g0 and the domain manifold is given the product metricg0 ⊗ g0. It is easily seen that the
map f is non-trivial, i.e., it is not one of the projections to the factor, and we can check
that it has dilationλ = √

2, hence it is a horizontally homothetic harmonic morphism
with harmonic energy density. Therefore, it is also a biharmonic morphism byTheorem
3.1. Postcomposing a nonharmonic biharmonic homothetic immersion defined inTheorem
4.5 to this map produces the required map. Finally, we can use biharmonic morphism
define by the radial projection (seeProposition 3.2) to pull-back a nonharmonic biharmonic
homothetic immersion defined inTheorem 4.5to have a nonharmonic biharmonic map
ϕ : R

4 \ {0} → Sn for anyn ≥ 3. �
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