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Abstract
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of polynomial biharmonic morphisms between Euclidean spaces. Finally, we show that a horizontally
homothetic harmonic morphism with harmonic energy density pulls back a nonharmonic biharmonic
map to a nonharmonic biharmonic map and that totally geodesic immersing the target manifold of
a nonharmonic biharmonic map into an ambient manifold produces a new nonharmonic biharmonic
map. These methods are used to construct many examples of nontrivial biharmonic maps.
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1. Introduction

In this paper, we work in the category of smooth objects; so all manifolds, vector fields,
and maps are assumed to be smooth unless otherwise stated.

1.1. p-Harmonic maps and morphisms

For p > 1, ap-harmonic map is a mapy : (M, g) — (N, k) between Riemannian man-
ifolds such thaty|$2 is a critical point of the»-energy

1
Ep(w,fz):f/ Idpl” dx
PJ

for every compact subs& of M. Locally, p-harmonic maps are solutions of the following
systems of PDEs:

75(¢) = |dgl??12(p) + (p — 2)|de|2 2 dyp(grad,|dg|) = O,

wherer;(p) = Traceg, Vdy denotes the tension field of Note that wherndg| # 0, we can
write

7p(¢) = 1dg|22[72(¢) + (p — 2)dp(grad,(Injdg],))]. (1)

When p = 2, p-harmonic maps are well known to be harmonic maps which include
geodesic, harmonic functions, and minimal isometric immersions as special cases.

A p-harmonic morphism is a map between Riemannian manifolds(M, g) — (N, h)
that preserves solutions pflLaplace’s equation in the sense thatif f = 0, thenAff(f o
@) = 0 for any functiony defined (locally) onV. It is well known (sed8,16,21,27] that a
non-constant map between Riemannian manifoldspisharmonic morphism if and only
if it is a horizontally weakly conformah-harmonic map. Awrizontally weakly conformal
mapey : (M, g) — (N, h) generalizes the notion of a Riemannian submersion in that for any
x € M atwhich dp, # 0, the restrictiond, |y, : Hy — Ty(x)N is conformal and surjective,
where the horizontal spaég, is the orthogonal complement 8f = ker(dp,) in T, M. Thus
it follows that there is a number(x) € (0, co) such thati(dp(X), dp(¥)) = A2(x)g(X, Y)
for any X, Y € H,. Note that at the point € M where &, = 0 we can letA(x) = 0 to
obtain a continuous functioh : M — R which is called thedilation of a horizontally
weakly conformal mag. A non-constant horizontally weakly conformal majis said to
be horizontally homothetic if the gradient of.2(x) is vertical, meaning thax(12) = 0 for
any horizontal vector field on M.

p-Harmonic maps of different values have different regularity theory whilst.aplace
operator of differenp values have different applications in physics. Ajgtnarmonic mor-
phisms of differenp values have different geometry as shown by the following theorem,
which gives some interesting links among horizontal conformalityarmonicity and min-
imality of fibers of such maps.

Theorem 1.1. ([2,3,8,43) Let m > n > 2 and ¢ : (M™, g) — (N", h) be a horizontally
conformal submersion.
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() If p=n, then ¢ is p-harmonic (hence a p-harmonic morphism) if and only if
{(p_l(y)}yeN is a minimal foliation of (M, g) of codimension n.
() If p # n, then any two of the following conditions imply the other one:
(&) ¢ is p-harmonic (hence a p-harmonic morphism),
ORO) yen is a minimal foliation of (M, g) of codimension n,
() ¢ is horizontally homothetic.

A 2-harmonic morphism is simply called a harmonic morphism examples of which
include holomorphic functions, Hopf fibrations, and Riemannian submersions with minimal
fibers. For a detailed background and developments of the study of harmonic morphisms, we
recommend the recent book by Baird and W§gjd An updated bibliography for harmonic
morphisms is available in R€fl9]. For recent work on the classifications and constructions
of p-harmonic morphisms, see Ref35-37]

1.2. Biharmonic maps and morphisms

A biharmonic map is a mapy : (M, g) — (N, h) between Riemannian manifolds such
thaty|$2 is a critical point of the bienergy

Fp.2) =3 / I

for every compact subs&t of M, whererz(p) is the tension field ap. Jiang[22] derived the
firstand second variational formulas for bienergy functional, showingtisad biharmonic
map if and only if its bitension field vanishes identically, i.e.,

%(¢) 1= —A%(12(¢)) — Tracg RY (dy, T2(p)) dp = 0, 2

where
A? = —Tracg(V¥)? = —Tracg(V¢V¥ — V¥,)

is the Laplacian on sections of the pull-back burgitéTN andR" is the curvature operator
of (N, h) defined by

RYNX.V)Z = [V}, V}1Z - Vi y 2.

Note thatr?(¢) = —J¥(12(p)), whereJ¢ is the Jacobi operator which plays an important
role in the study of harmonic maps.

Clearly, any harmonic map is a biharmonic map, so it is interesting to study nonharmonic
biharmonic maps. When the map is the canonical inclusiad — R”" of a submanifold
of a Euclidean space, we denotefthe mean curvature vector and view it as a niap
M — R". Then, Cherj11] called the submanifold/ a biharmonic submanifold A H =
(AHY, ..., AH") = 0, whereA is the Beltrami—Laplace operator of the metric induced
by i. Noting thatAH = A(—2 Ai) = —2 A% = — 1 72(i) we see thad/ is a biharmonic
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submanifold of Euclidean spad®” if and only if t2(i) = 0, i.e., the inclusion map is a
biharmonic map. It is well-known (s€d4]) that an isometric immersion is minimal if
and only if it is harmonic. So a minimal submanifold is trivially biharmonic. A conjecture
made by Cheffil1] states that any biharmonic submanifold of Euclidean space is minimal.
Chen and Ishikaw§il2] proved that there is ho honminimal (equivalently, nonharmonic)
biharmonic surface it so the conjecture is true in this case. Though the conjecture is also
known to be true in some other cases (see §18,18,20) it is still open for the general
case. Caddeo et f] obtained a classification of nonharmonic biharmonic submanifolds
in $3, whilst in Ref.[10], they shown that there is no nonharmonic biharmonic submanifold
in hyperbolic 3-spaceéi3(—1) and they also gave two ways to construct nonharmonic
biharmonic submanifolds ¢f*. Conformally deforming the domain or the target metric of

a harmonic maw : (M, g) — (N, h) so thaty becomes a nonharmonic biharmonic map
was studied by Baird and Kamissolt] and Balmug7].

A biharmonic morphism (see[34] for precise definition and background) is a map be-
tween Riemannian manifolds that pulls back local biharmonic functions to local biharmonic
functions. These are characterized as a special subclass of horizontally weakly conformal
biharmonic map$30,34]

The rest of the paper is organized as follows. In Seciome study the transformation
of a p-harmonic morphism into g-harmonic morphism via biconformal change of the
domain metric and/or conformal change of the codomain metric, and we characterize a
twisted product and a warped product according to its projection map beifigaemonic
morphism for some particular valuemfSectior3is devoted to the study of the relationship
betweermnp-harmonic morphisms and biharmonic morphisms. We describe phlogemonic
morphisms which are also biharmonic morphisms and give a complete classification of
polynomial biharmonic morphisms between Euclidean spaces. Finally, in Ségtioa
show that a horizontally homothetic harmonic morphism with harmonic energy density
pulls back a nonharmonic biharmonic map to a nonharmonic biharmonic map and that
totally geodesic immersing the target manifold of a nonharmonic biharmonic map into an
ambient space produces a hew nonharmonic biharmonic map. These are used to construct
many examples of nontrivial biharmonic maps.

2. p-Harmonic morphisms and some applications

In this section, we first derive a formula for theéension field of a horizontally conformal
submersion under a biconformal change of the domain metric and a conformal change of
the codomain metric. We then use it to obtain the conditions under whichaamonic
morphism is transformed intaggharmonic morphism under biconformal and/or conformal
change of metrics. We close the section by giving an applicatiprhairmonic morphisms
in characterizing twisted and warped products.

Lemma 2.1. Let ¢ : (M™, g) — (N", h) be a horizontally conformal submersion with
dilation ). © M — (0, 00). Let g = gn + gv be the decomposition of the metric g into hor-
izontal and vertical components. Let g be a biconformal change of g and h a conformal
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change of h given by
(@ g=o0gn+p g, () h=v"h
where o, p: M — (0,00) and v: N — (0, 00) are smooth functions. Denote v = v o ¢.
Then, the p-tension field of the map ¢ : (M™, g) — (N", h) is given by
Tplp) = nP2V2AP 252 P (1p() + dp(grad Ing. 2o " ")) (3)

Proof. By Lemma 4.6.6 ir{6], ¢ is a horizontally conformal submersion with respecgto ~
andh on M andN with dilation X = Acv~! and has tension field

t2(¢) = 0®{72(p) + de(grad Ing> " p" "7 2))). (@)
A direct computation using the fact thais a horizontally conformal submersion gives

|d(,o|§_2 = n(P=2/2)p=250=2)2=p (5)
On the other hand, one can check that the payith respect to the metrics andh and
the original map share the same horizontal and vertical space;} étespectively(e;})

be a local orthonormal frame of the horizontal distributignwith respect to metrig
(respectivelyg). Then,é; = oe;, and

de(grad; /) = de((grad; f)n + (grad; f)v) = de((grad; f)n) = dy (Z(&f)&)

i=1
= o?dy <i<el~ f)el) = o%dy((gradf)n) = o?dy(gradf) (6)
i=1
for any functionf on M. Using(5) and (6)we have
(p — 2)dp(grad; In|de|;) = de(grad, |n|d<p|§72) = o’dg(grad In¢."~%oP~2>7P)).
(7

Substituting Egs(4), (5), and (7)into thep-tension field formulg1) we obtain(3), which
completes the proof of the lemmal]

As an immediate consequence, we have the following corollary.

Corollary 2.2. ¢:(M™,g) — (N", fz) is a p-harmonic morphism if and only if t2(¢) +
de(grad InQ.P—2gP—" p="My=P)) = 0.

Remark 1. Note that when) = 1, 0 = p = o1, Corollary 2.2reduces to Lemma 5.1 in
[8] where the authors constructed some nontriptalarmonic morphism via a conformal
change of the domain metric.

Now we are ready to prove the following theorem which includes Proposition 4.6.8 in
[6] as a special case.
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Theorem 2.3. Forp,q > 1,let¢: (M™, g) — (N", h) be a submersive p-harmonic mor-
phism with dilation ). Let g be a biconformal change of g and h a conformal change of h
given by (a) and (b) in Lemma 2.1Then, the map ¢ : (M™, 3) — (N", h) is a g-harmonic
morphism if and only if grad@Q9=Po97" p" 7"V~ 9) is vertical; equivalently, the function
AP "M s constant along horizontal curves.

Proof. Supposethap : (M™, g) — (N", h) is a submersivg-harmonic morphism. Then,
it is ap-harmonic horizontally conformal submersion. It follows that

7p(¢) = 1dgl”?(r2(¢) + (p — 2)dp(grad(ride]))} = 0. (8)

Noting thaty is a horizontally conformal submersion with dilatiarand|dg|? = n12 # 0
we have, from(8),

2(¢) = dp(grad(ina?7)). (9)
Using(3) and (9)we obtain
1,(p) = n172/2)97254,2=4dy(grad InQ4 =P ™" p" M1 79)), (10)

Since ¢ is also a horizontally conformal submersion with respect gtoand h,
we see from(10) that ¢ is a g-harmonic morphism with respect tg and h
if and only if dp(grad InQi—?g?7"p"~™y"~4)) = 0, which is equivalent to @(grad
(A= Pod7 p" =My~ 4)) = 0. This means that graxd{~?o”~" p" V"~ P) is vertical. Thus
we obtain the theorem.

Corollary 2.4. Let ¢ : (M™, g) — (N", h) be a submersive p-harmonic morphism with
dilation \. Let h be defined as in (b) in Lemma 2.kand § = o~ 2g. Then, ¢ : (M™, 0~2g) —
(N, b) is a g-harmonic morphism if and only if grad@.9—Po?=""=4) s vertical. In partic-
ular, a submersive p-harmonic morphism remains a p-harmonic morphism under conformal
changes o—2g and h of the domain and codomain metrics if and only if gradgP~"v"P) is
vertical.

Proof. Sinceg = o~2g = 0~ 2gn + 0~ 2gy, adirect application cfheorem 2.3vith p = o
gives the first assertion. The second statement follows from the first onewith. O

Corollary 2.5. Let ¢ :(M™, g) — (N",h) be a submersive p-harmonic morphism
with dilation *. Then, ¢ : (M™,0=2%g) — (N", h) is a g-harmonic morphism if and
only if gradQd=Poc9™™) is vertical. In particular, a submersive p-harmonic mor-
phism remains a p-harmonic morphism under a non-horizontally homothetic conformal
change o~2g of the domain metric if and only if the original map is an m-harmonic
morphism.

Proof. Applying Corollary 2.4with v = 1 gives the first statement. It follows that a sub-
mersivep-harmonic morphism remaingpaharmonic morphism under a conformal change
o2g of the domain metric if and only if grad¢—") is vertical, which is equivalent to

(p — m)oP~™~Ldp(grads) = 0. The last statement follows since the conformal change of
metric is non-horizontally homothetic, i.e p@rado) # 0. O
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Similarly, we have the following corollary.

Corollary 2.6. Let ¢ :(M™, g) — (N",h) be a submersive p-harmonic morphism
with dilation A. Then, ¢ : (M™, g) — (N", B~°h) is a g-harmonic morphism if and
only if gradQ9=P(B o ¢)'~9) is vertical. In particular, a submersive p-harmonic mor-
phism remains a p-harmonic morphism under a non-homothetic conformal change
B2h of the codomain metric if and only if the original map is an n-harmonic
morphism.

Corollary 2.7. Let ¢ : (M™, g) — (N", h) be a submersive p-harmonic morphism with
dilation } and p # m. Then, ¢ : (M™, 0=2g) — (N", h) is an m-harmonic morphism if
and only if the original map is a horizontally homothetic submersion with minimal fibers
and hence it is a p-harmonic morphism for any p > 1.

Proof. Applying Corollary 2.5with ¢ = m we conclude that the map: (M™, 0—2g) —
(N, h) is anm-harmonic morphism if and only if gra#(' ) is vertical which is equivalent
to gradg) being vertical since = m. The latterimplies that the original map is horizontally
homothetic and hence, 0], a p-harmonic morphism for any > 1. It follows from
Theorem 1.Xhatey has minimal fibers. O

Applying Corollary 2.6with ¢ = n, we have the following corollary.

Corollary 2.8. Let ¢ : (M™, g) — (N", h) be a submersive p-harmonic morphism with
dilation A and p # n. Then, ¢ - (M™, 6~2g) — (N", h) is an n-harmonic morphism if and
only if the original map is a horizontally homothetic submersion with minimal fibers and
hence it is a p-harmonic morphism for any p > 1.

Using Theorem 2.3 we have the following invariance gf-harmonic morphisms
under biconformal changes of metric which generalizes the corresponding result for
harmonic morphisms (i.ep =2 case) obtained irf31] (see also Corollary 4.6.10
in [6]).

Corollary 2.9. Let ¢ : (M™, g) — (N™, h) be a horizontally conformal submersion with
dilation ). Set g5 = 0 2gh 4+ o2=P) =) g, Then, ¢ : (M™, g5) — (N", h) is a p-
harmonic morphism if and only if the original map is a p-harmonic morphism.

It was proved in35] that if ¢ : (M™, g) — (N", h) is a submersiv@-harmonic mor-
phism with dilationi, and suppose that is not horizontally homothetic. Then, for any
g >landg # m,¢: (M™, |dp|2P—9/(m=4)g) _ (N" h)is ag-harmonic morphism which
is not horizontally homothetic. This provides a method to construct nonteiMarmonic
morphisms fromp-harmonic morphisms via a conformal change of the domain metric.
The following corollary characterizes this as the only conformal change of metric of
the form |dp|“g that renders a nontrivigi-harmonic morphism a nontrivial-harmonic
morphism.
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Corollary 2.10. Let ¢ : (M™, g) — (N", h) be a submersive p-harmonic morphism with
dilation ). Suppose ¢ is not horizontally homothetic. Then, ¢ . (M™, |dp|*g) — (N", h) is

a g-harmonic morphism with q # m if and only if « = T_;.

Proof. Applying Corollary 2.5with o = |dg|~*/?2 we seethap : (M™, |dp|*g) — (N", h)
is a g-harmonic morphism if and only if grat{—?|dgp|*""~9/2) is vertical. Sincey is
horizontally conformal submersiofdp| = /nA, we have

gradg.?—?|de|*"~9/2) = grad (%" —9)/2+ =Pl (11)

where C is a nonzero constant. Note that graal("—9/2+a—r)y is vertical if and

. . . _ . _ 2(p—q)
only if grada is vertical or elsex(m — q)/2+ (¢ — p) =0, i.e.a = mp—_qq. By assump-
tion, ¢ is not horizontally homothetic, i.e. gradis not vertical, thus we obtain the
corollary. O

Recall that the doubly twisted product of Riemannian manifolsg) and (v, #) with
twisting functionse, 8: M x N — (0, o0) is referred to the Riemannian manifoldlf (x
N, o?g + B?h) which is denoted by2M x gz N. Whena = 1 we haveM x z N, a twisted
product with twisting functiong(x, y). Whena = 1 and 8 depends only on the points
in M we have a warped product with the warping functgg). For more study on the
geometry of doubly twisted products we refef38]. For curvature conditions for a twisted
product to be a warped product, 4&&]. Svensson if42] characterizes warped products
as special harmonic morphisms. As a generalization[3Bligives a characterization of
twisted products as speciaharmonic morphisms. Our nexttheorem characterizes a twisted
product among doubly twisted products and a warped product among twisted products using
p-harmonicity of their projection maps. In proving the theorem, we need the following
lemma.

Lemma 2.11. The projection ,2M™ x gz N* — (N", h), (x, y) =y, of a doubly twisted
product onto its second factor is a p-harmonic morphism if and only if &™ B"~P = f(x) for
some function f : M — (0, o).

Proof. Consider the projection of the Riemannian product
(M"™ x N",G=g+h)— (N,h), o, y)=y. (12)

Itis a Riemannian submersion with totally geodesic fibers and hence a harmonic morphism
with dilation 2 = 1. Note that the horizontal space at the pointy) can be identified with

T,N and henc&n = h, Gy = g. Applying Theorem 2.3vith p =2,g = p, A =1,v =1,

o = p~tandp = o~ ! we conclude thatthe projectign™ x gz N* — (N, h), ¢(x, y) =

y, of a doubly twisted product onto its second factor jskearmonic morphism if and only

if gradg; (o 8"~ P) is vertical. This, in local coordinates, is equivalent to

h"fi(a'"ﬂ"—f’)i =0
ay! ay’
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It follows that
0
hi— ("B P)=0 (13)
ay!

for any j=1,...,n. Since the metrid: is positive definite we see from E@L3) that
aiy,-(amﬂ"*l’) = 0 for anyi hence the function™ g"~? does not depend on the pointsNn
Thus we obtain the lemma.Od

Theorem 2.12. Let o, f: M™ x N" — (0, 00) be two functions. Then,

(1) the projection ¢ 12 M™ x gaN" — (N", h), ¢(x, y) = y, of a doubly twisted product
onto its second factor is an n-harmonic morphism if and only if (2 M™ X g2 N" can be
written as a twisted product;

(2) the projection ¢ : M™ x g2 N" — (N", h), p(x, y) =y, of a twisted product onto its
second factor is a p-harmonic morphism with p # n if and only if M™ x g2 N" can be
written as a warped product;

() the projection ¢ : M™ x g2 N" — (M, g), ¢(x, y) = x, of a twisted product onto its
first factor is a p-harmonic morphism if and only if M™ X g2 N" can be written as a
Riemannian product.

Proof. For statement (1), we know fronj3b], Proposition 2.11] that the projection of
a twisted product onto its second factor is raharmonic morphism. Now suppose the
projectiong :,2 M™ x g2 N — (N", h), ¢(x, y) = y, of a doubly twisted product onto its
second factor is am-harmonic morphism. Then, themma 2.1« = (1/f(x))Y™ for some
function f: M — (0, c0). It follows that the doubly twisted produgiM™ x g2 N" can be
written as a twisted product o™, g) and (V", k) with the twisting functiong, where

g = o?(x)g is a metric onM conformal tog.

For statement (2), we know frof2] (see als6], Proposition 2.4.26) that the projection
of awarped product onto its second factor is a horizontally homothetic harmonic morphism
hence g-harmonic morphism for any > 1 by [8]. Conversely, suppose the projection
@ M™ xg2o N" — (N", h), ¢(x, y) = y, of a twisted product onto its second factor js-a
harmonic morphism witly # n. UsingLemma 2.1with « = 1 and the fact thag # n we
conclude that the twisting functiofi= (f(x))Y/®~?) for some functionf : M — (0, cc).

It follows that 8 depends only on the points M, so the twisted producd™ x g2 N" is in
fact a warped product.

To prove (3), we note that the horizontal and vertical distributionsare# = TM and
Y = TN, respectively. LeG = g + %1, thenGy, = g andGy = B2h. Since the projection
@ M" x N" — (M, g), o(x, y) = x is a Riemannian submersion with totally geodesic
fibers, itis a harmonic morphism with dilatian= 1. Noting that¥™ x g2 N" isisometricto
g N" x M™, we canapplyrheorem 2.3vith p = 2,g = p,A =v =1,0 = landp = gt
to conclude that the projectign: M™ x g2 N* — (M, g), ¢(x, y) = x, of atwisted product
onto its first factor is @-harmonic morphism if and only if grads™) is vertical. This,
together with the fact that the horizontal distribution is integrable, implies that the twisting
function g does not depend on the pointsiih Thus, the twisted produdt?™ x g N" can
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be written as a Riemannian product M, g) and (V", E), whereh is a metric conformal
to h on N. This ends the proof of the theorem(

From (3) of Theorem 2.12ve can easily deduce the following corollary.

Corollary 2.13. For any p > 1,the projection ¢ : M™ x g2 N" — (M, g), ¢(x, y) = x, of
a warped product onto its first factor is a p-harmonic morphism if and only if B is a constant
and hence M™ X g2 N" is in fact a Riemannian product up to a homothety.

Remark 2. Yun proved in [44], Theorem 2.4] that the projection of a warped product
onto its first factor is harmonic (hence a harmonic morphism) if and only if the warp-
ing function is a constant. Clearlorollary 2.13includes Yun's result as a special
case.

3. p-Harmonic and biharmonic morphisms

In this section, we characterize thgs@armonic morphisms which are also biharmonic
morphisms and give some examples of such maps which includes harmonic Riemannian
submersions and projections of some warped products as subclasses. These will be used to
construct nonharmonic biharmonic maps in the next section. We close the section by giving
a complete classification of polynomial biharmonic morphisms between Euclidean spaces.

Theorem 3.1. For p # 4, a submersive p-harmonic morphism ¢ : (M™, g) — (N", h)
is also a biharmonic morphism if and only if ¢ is a horizontally homothetic harmonic
morphism with harmonic energy density, i.e., Ag(nAZ/Z) =0.

Proof. If ¢ is a horizontally homothetic harmonic morphism, then it is a submersion by
[17], and it is gp-harmonic morphism for any > 1 by[8]. If, in addition, has harmonic
energy density, thenitis also a biharmonic morphism by Theorem B8JriThus we obtain
the “if part” of the theorem. For the “only if part”, suppogds a submersiv@-harmonic
morphism. Then, itis a-harmonic horizontally conformal submersion with dilatiosuch
that|dg|? = nA2. Using(1) we have

2(¢) + (p — 2)dp(grad,(In2)) = 0. (14)

On the other hand, ip is also a biharmonic morphism, then, by Theorem 4.[36], we
have

2275(p) + de(grad, ) = 0,

which can be written as

2(p) + 2dp(grad,(In 1)) = 0. (15)
It follows from (14) and (15)hat

(p — 4)dp(grad,(In 1)) = 0. (16)
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Thus, if p # 4, then &(grad, (Ini)) = 0, which means that is a horizontally homothetic
submersion. It follows fronj8] that ¢ is a p-harmonic morphism for any > 1 and in
particular a horizontally homothetic harmonic morphism. It follows then from Theorem
3.8 of [34] thaty must have harmonic energy density. Thus, we complete the proof of the
theorem. O

Proposition 3.2. The radial projection ¢ : R™ \ {0} — S"~ 1, o(x) = x/|x| is a bihar-
monic morphism if and only if m = 4.

Proof. It is known (see, e.d6]) that the radial projectiop : R™ \ {0} — §"~ 1, p(x) =
x/|x| is a horizontally homothetic harmonic morphism with dilatiafx) = 1/|x|. By
Theorem 3.1¢ is also a biharmonic morphism if and only4f*" 22 = AR" (x| 72) = 0.
Let f: R™\ {0} — R be the function given by (x) = |x|%. Then, a direct computation
givesAR" £ = AR"(1x%) = a(a — 24 m)|x|*~2. It follows that|x|* is a harmonic func-
tion in R™ \ {0} if and only if « = 2 — m. In particular,A? = |x|~2 is a harmonic function
onR™\ {0} if and only if m = 4. Thus, the proposition follows.]

Remark 3. We remark that a four-dimensional domain seems to have a mysterious link to
biharmonicity since irf4] it was proved that inversion in the unit sphere R™ \ {0} —
R™ \ {0}, o(x) = x/|x|? is a biharmonic nonharmonic map if and onlyif= 4.

The following proposition provides a class of horizontally homothetic harmonic mor-
phisms with harmonic energy density and hence a class of maps which are both harmonic
and biharmonic morphisms.

Proposition 3.3.  The projection ¢ : M™ x g2 N* — (N", h), ¢(x, y) =y, of a warped
product onto its second factor is a biharmonic morphism if and only if 1/ B2 is a harmonic
function on M.

Proof. Note that the projectiod!™ x g N" — (N", h), ¢(x, y) = y, of a warped prod-

uct onto its second factor is a horizontally homothetic harmonic morphism with dilation
A =1/ [42] (see alsd6]). By Theorem 3.1¢ is a biharmonic morphism if and only

if Anghxz = 0. Sincer = 1/8 is a function defined oM, one can easily check that

A gy g2ph? = Agh? = Ag(1/B7), from which the corollary follows. O

Theorem 3.4. Form > n > 2, a polynomial map (i.e. a map whose component functions
are polynomials) ¢ : R™ — R" is a biharmonic morphism if and only if it is a composition
of an orthogonal projection followed by a homothety.

Proof. It is well known (see, e.g6]) that the composition of an orthogonal projection
followed by a homothety is a horizontally homothetic harmonic morphism with constant
energy density. Thus, bheorem 3.1it is also a biharmonic morphism. Conversely, sup-
posey is a biharmonic morphism, then, [84], itis a special horizontally weakly conformal
biharmonic map. Sincgis assumed to be a polynomial map, itis harmonic by a theorem in
[1], which states that a horizontally weakly conformal polynomial map between Euclidean
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spaces s harmonic. It follows thats a harmonic morphism since itis a horizontally weakly
conformal harmonic mafi6,21] By Theorem 3.8 irj34], ¢ is a horizontally homothetic
harmonic morphism with harmonic energy density being both a harmonic morphism and a
biharmonic morphism. It follows frorfiL7] thate is a submersion since it is a nonconstant
horizontally homothetic harmonic map. Finally, using the classification of horizontally ho-
mothetic submersiop : R — R" ([36], Theorem 2.7) we conclude thais a composition

of an orthogonal projection followed by a homothety.]

Remark 4. Note that there are many polynomial harmonic morphisms between Euclidean
spaces (for classifications of quadratic harmonic morphisms[33%88]). However, as
indicated byTheorem 3.4the only polynomial biharmonic morphism between Euclidean
spaces is a composition of an orthogonal projection followed by a homothety. This is also
true forp-harmonic morphism withy £ 2 (se€/36], Theorem 2.8).

4. Some constructions of nonharmonic biharmonic maps

In this section, we prove that a horizontally homothetic harmonic morphism with har-
monic energy density pulls back nonharmonic biharmonic maps to nonharmonic biharmonic
maps. We also show that totally geodesic immersing the target manifold of a nonharmonic
biharmonic map into an ambient manifold produces a new nonharmonic biharmonic map.
We use these two methods to construct many examples of nhonharmonic biharmonic maps
from or into the standard spheres.

Theorem4.1. Let : (M, g) — (N, h) be a nonconstant horizontally homothetic harmonic
morphism with harmonic energy density, and let v . (N, h) — (Q, k) be a map. Then, the
composition o ¢ - (M, g) — (Q, k) is a nonharmonic biharmonic map if and only if {r is
nonharmonic biharmonic on the open subset (M) C N.

Proof. Sinceg is a harmonic morphism, we have (446,21)
(Y 0 9) = 2712(¥) 0 9. (17)

On the other hand, byheorem 3.1¢ is also a biharmonic morphism. It follows from
Proposition 4.5 irj30] that

P(Yog) =1V o, (18)

wherer?(y) denotes the bitension field gf. From(17) and (18Wwe conclude thai o ¢ is
nonharmonic biharmonic if and onlyf is nonharmonic biharmonic gn(M) € N. Since
¢ is a harmonic morphism it is an open mappii®] and hencep(M) C N is an open
subset. Thus, we obtain the theoren]

Noting that a harmonic Riemannian submersion is a horizontally homothetic harmonic
morphism with constant hence harmonic energy density we have the following corollary.

Corollary 4.2. Let ¢ : (M, g) — (N, h) be a harmonic Riemannian submersion, and let
¥ (N, h) — (Q, k) be a map. Then, the composition o ¢ : (M, g) — (Q, k) is a non-



370 Y.-L. Ou/ Journal of Geometry and Physics 56 (2006) 358-374

harmonic biharmonic map if and only if ¥ is nonharmonic biharmonic map on the open
subset (M) C N.

Remark 5.

(1) Lety : (M, g) — (N, h) be a harmonic Riemannian submersion, and 1€V, &) —
(N, k) be the identity map. It was proved ifY], Proposition 2.1 and Corollary 2.2] that
the compositiorio ¢ : (M, g) — (N, k) is a nonharmonic biharmonic map if and only
if i is a nonharmonic biharmonic map on the open supgeft) C N. Clearly, thisis a
very special case dfheorem 4.1

(2) Let  §"(a) = S"(a) x {b} = {(xL, ..., x"t1, b)) L (H)2 = 42, a € (0, 1), a® +
b? = 1}, andi : §"(a) — $"* be the canonical inclusion. Then, it was proveddh
thati is a nonharmonic biharmonic map if and omly= 1/4/2, andb = +1//2. Let
¢ (M, g) - S"(a) be a harmonic Riemannian submersion. Then, it was proved in
[[32], Theorem 2.1] thato ¢ : (M, g) — S"*1 is a nonharmonic biharmonic map if
and only ifa = 1/+/2 andb = +1/+/2. Note that whem is onto orM is compact, the
same results follows immediately fro@orollary 4.2

(3) For other construction of nonharmonic biharmonic maps using composition of a har-
monic map and an inclusion s¢28] (also[29]) where the authors prove that for a
nonconstant map : (M, g) — §"(Z5), the mapio ¢ : (M, g) — $"+1(r) is nonhar-
monic biharmonic if and only is harmonic with harmonic energy density.

CombiningTheorem 4.JandProposition 3.3we have the following corollary.

Corollary 4.3. Let f : (M, g) — (0, 00) be a harmonic function and ¥ : (N, h) — (Q, k)
be a nonharmonic biharmonic map. Then, the composition of the projection ps - M X 1
f

N — N of the warped product followed by  is a nonharmonic biharmonic map.

Recall that the second fundamental for¥hdy € I'(T*M ® T*M ® ¢~ 1TN) of a
map ¢ : (M, g) — (N, ) is defined byV de(X, ¥) = Vi (de(Y)) — dp(VMY), VX, Y €
I'(TM). A map is totally geodesic if its second fundamental form vanishes identically. It is
well known (see, e.d14]) that post-compaosition of a totally geodesic map to a harmonic
map yields a harmonic map. The following proposition can be viewed as generalizations of
this and it provides a method to constrpgharmonic maps and nonharmonic biharmonic
maps.

Proposition 4.4. Let v : N — (Q, k) be the inclusion map of a totally geodesic subman-
ifold, and let ¢ : (M, g) — (N, h = ¥*k) be a map into the submanifold. Then,

(i) the map r o @ into the ambient space (Q, k) is a p-harmonic map if and only if ¢ is a
p-harmonic map.

(ii) the map Y o @ into the ambient space (Q, k) is a nonharmonic biharmonic map if and
only if ¢ is a nonharmonic biharmonic map.
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Proof. Itis well known[14] (see als¢6], Proposition 3.3.12) that the second fundamental
form and the tension field of the composition map verify the following identities:

Vd(y o ¢) = dyr(Vdy) + Vdy(dg. dg). (19)

2(V 0 ¢) = dyr(r2(g)) + Trace Vdy(de, dy). (20)

Recall thatifyy : N — (Q, k) is the inclusion map of a submanifold, or more generally, an
isometric immersion, then we can have an orthogonal decomposition of the vector bundle
Y~1TQ = TN @ vN into the tangent and normal bundles. We ugedalidentify TN with its
imagetN in ¥~1TQ. Then, for anyX, Y € I'(TN) we haveV}/(’(dw(Y)) = V%Y, whereas
d1/x(V§}’Y) equals the tangential component%f Y. It follows thatvVdy (X, Y) equals the
normal component dvg Y. This, by definition, is the second fundamental faBX, Y) of

the immersed submanifold(N) in Q (see[23], Chapter 7). Thus, the second fundamental
form of an isometric immersioty : N — (Q, k) (as a map) equals the second fundamental
form of the immersed submaniflagd( N) € Q (see als¢6], Example 3.2.3). Therefore, the
inclusion map of a totally geodesic submanifold is a totally geodesic map. This, together
with (20), gives

2(¥ 0 ¢) = dy(r2(¢)). (21)
On the other hand, using local coordinates, we have
; 0(Y 0 9)* 3(Y 0 @) . 0p™ 0B oy oyP
d 2 = 1 T i k = Y T
| (¢o¢)| g a i ax] 0(,3 g 8x’ ax] ayA ayB Ol,B
o awA awB )
=gV T _pap = |do|? 22
i a7 AB |do] (22)

where the third equality was obtained by using that fact that an isometric immersion
and hence% %kaﬂ = hap. Using (21), (22)and the definition op-tension field we
have

T5(1 0 9) = |dg| "~ 2dy(r2(p)) + (p — 2)|dg| " 3(dy) o de(grad,|dg,)
= dy(7)(p)). (23)

which gives statement (i).

For statement (ii), we note that the inclusion majs a totally geodesic map, so we can
use a theorem if#1] to have the bitension field of the compositigf{y o ¢) = dy(v2(¢)).
It follows thaty o ¢ is biharmonic if and only ify is biharmonic. On the other hand, (1)
we see that o ¢ is nonharmonic if and only i§ is nonharmonic since is an immersion.
This completes the proof of the proposition.]

An interesting problem in the study of harmonic maps concerns the existence and nonex-
istence of harmonic maps from standard spheres into a manifold. For example, in their series
of papers, Lin and Wan@4—-26]study approximable harmonic maps based on the existence
and nonexistence of nonconstant harmonic n$&ps- N called harmonic 2-spheres. One of
their conjectures is (s¢24]): any weakly harmonic map of finite energy fravfi” into N is
smooth if there are no harmonic spheﬁésﬁn Nfor2 < k <m — 1. Awell-known theorem
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of Sacks and Uhlenbe¢k0] guarantees the existence of harmonic 2-sphek&fithe uni-

versal covering space 6fis not contractible. However, Sacks and Uhlenbeck’s technique,
as they pointed out in their paper, does not extend to give the existence of higher-dimensional
harmonic spheres. [[35], it was shown that there exists harmonic 3-spher€ when the
universal covering space dfis not contractible. To the author’s knowledge (see also remark

in [24]), there has not been any general statement concerning the existence of higher dimen-
sional harmonic spheres in the literature besides the above-mentioned result. By contrast,
the following theorem shows that nonharmonic biharmonic spheres are abundant.

Theorem 4.5. For any n > 2,the standard sphere S admits a nonharmonic (equivalently,
non-minimal) biharmonic homothetic immersion into stk fork > 1.

Proof. For anyn > 2, letg : §" — S”(%), ¢(x) = x/+/2, denote the standard homoth-
ety. It is easy to see that is a horizontally homothetic harmonic morphism with con-
stant energy density hence it is also a biharmonic morphismh®orem 3.11t follows
from Theorem 4.1that the mago ¢ : §" — S"(%) ~ S”(%Z) x {%} — §"t1 where

i: S”(%@) X {%2} — $"*1 denotes the canonical inclusion, is a nonharmonic biharmonic

map since the inclusiohis a nonharmonic biharmonic mdg]. Let v : s*t1 — gntk

be the totally geodesic inclusion which magis™! onto the equator a§”+*. Then, using
(i) of Proposition 4.4ve see thai) oio ¢ gives a nonharmonic biharmonic homothetic
immersion ofS” into §"** for anyk > 1. [

The following corollary produces many examples of nonharmonic biharmonic maps into
spheres.

Corollary 4.6.

(i) Foranyn > 3, there exists a nonharmonic biharmonic map ¢ : S2 — S".

(i) Forany n > 3, there exists a nonharmonic biharmonic map ¢ : 8% — S".
(iiiy For any n > 5, there exists a nonharmonic biharmonic map ¢ : S* — S".
(iv) Foranyn > 9, there exists a nonharmonic biharmonic map ¢ : S*° — §".

(V) Foranyn > 3, there exists a nonharmonic biharmonic map ¢ : §° x §% — §".
(Vi) Foranyn > 5, there exists a nonharmonic biharmonic map ¢ : S’ x §* — S".
(Vi) Forany n > 3, there exists a nonharmonic biharmonic map ¢ : R*\ {0} — S".

Proof. (i) follows from Theorem 4.5ith n = 2. For (ii),(iii) and (iv), leth : §2*~1 — s»

(n = 2, 4, 8) be the Hopf fibration which is well-known (see, €]) to be a horizontally
homothetic harmonic morphism with constant energy density. It follows frbeorem 3.1

that it is also a biharmonic morphism. Let §” — $"+* be the nonharmonic biharmonic
homothetic immersion defined itheorem 4.5Then,p o & gives the required nonharmonic
biharmonic map. For (v) and (vi), lgt : R” x R" — R" withn = 4, 8, andF(x, y) = xy
denote the standard multiplication in the real algebra of quaterionic or Cayley numbers.
It is proved in[5] that this harmonic morphism restricts to a harmonic morphjsea
Flgi1, -1 1 "1 x §"~1 — §7~1 where the target sphere is given the standard metric
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go and the domain manifold is given the product megga® go. It is easily seen that the
mapj is non-trivial, i.e., it is not one of the projections to the factor, and we can check
that it has dilation. = +/2, hence it is a horizontally homothetic harmonic morphism
with harmonic energy density. Therefore, it is also a biharmonic morphisifhleprem

3.1 Postcomposing a nonharmonic biharmonic homothetic immersion defifidetorem

4.5 to this map produces the required map. Finally, we can use biharmonic morphism
define by the radial projection (s€eoposition 3.2to pull-back a nonharmonic biharmonic
homothetic immersion defined ihheorem 4.50 have a nonharmonic biharmonic map

¢ R*\ {0} » §" foranyn > 3. O
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